If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.5x^2-60x+128=0
a = -0.5; b = -60; c = +128;
Δ = b2-4ac
Δ = -602-4·(-0.5)·128
Δ = 3856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3856}=\sqrt{16*241}=\sqrt{16}*\sqrt{241}=4\sqrt{241}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{241}}{2*-0.5}=\frac{60-4\sqrt{241}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{241}}{2*-0.5}=\frac{60+4\sqrt{241}}{-1} $
| 5y-13=8-2y | | 9(m-4)=27 | | 5x+8-x=4(x+3)-4 | | 5(2y-3)=65 | | 6x^2+9x-33=0 | | -4x8=8 | | 2x3x-3=-18 | | 7y-3.5=6.5 | | 20=5b+40 | | -7b-9=-16 | | Y-(-8)=2(x-4) | | -3(h+8)=h+24-4h | | 3x-2/2=x+1 | | -4p-5=-1 | | -6a+8=-88 | | 10y-2(y+6))=5y-9 | | 24x+4=162x | | 34=n/2 | | b-14=90 | | 62=h-10 | | 6−(x/11)=7 | | 21-6y=24 | | 2a2=-6+8a | | 8y-5y-14=25.93 | | 6x2-48=-12x | | -7x+2-7x=2 | | 80+4x-5x-10+4x=180 | | 5k2=60-20k | | |x+5|+9=2 | | -7x-8=-10x | | 6(m-1)=9(m-4) | | 232.75/5=x/2 |